Abstract

The Ising problem, a vital combinatorial optimization problem in various fields, is hard to solve by traditional Von Neumann computing architecture on a large scale. Thus, lots of application-specific physical architectures are reported, including quantum-based, electronics-based, and optical-based platforms. A Hopfield neural network combined with a simulated annealing algorithm is considered one of the effective approaches but is still limited by large resource consumption. Here, we propose to accelerate the Hopfield network on a photonic integrated circuit composed of the arrays of Mach-Zehnder interferometer. Our proposed Photonic Hopfield Neural Network (PHNN), utilizing the massively parallel operations and integrated circuit with ultrafast iteration rate, converges to a stable ground state solution with high probability. The average success probabilities for the MaxCut problem with a problem size of 100 and the Spin-glass problem with a problem size of 60 can both reach more than 80%. Moreover, our proposed architecture is inherently robust to the noise induced by the imperfect characteristics of components on chip.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.