Abstract

A photonic microwave phase-coded pulse generator is proposed and experimentally demonstrated based on the principle of vector sum. The key component of the proposed pulse generator is an integrated polarization-division multiplexing Mach-Zehnder modulator (PDM-MZM) and a 90° hybrid coupler. By properly setting the data sequences applied to the specially biased PDM-MZM, binary and quaternary phase-coded microwave pulses (PCMPs) that are free from the background signals can be generated. Since no filters and polarization adjustment are involved, the proposed pulse generator is characterized by a simple structure, low-loss, flexible frequency tunability and high long-term stability. The experimental results show that background-free 4 Gb/s Barker and Frank PCMPs at 18 GHz and 2 Gb/s Barker and Frank PCMPs at 24 GHz are successfully generated. The calculated pulse compression ratio and peak-to-side lobe ratio are in good agreement with the theoretical values.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call