Abstract

We propose a novel scheme for high-frequency quadrature phase shift keying (QPSK) photonic vector signal generation based on a single directly modulated laser (DML) employing photonic frequency quadrupling and balanced pre-coding technologies. In order to realize frequency quadrupling, a wavelength selective switch (WSS) is intruded in our experiment. The intruded WSS combined with DML can not only realize high-frequency vector signal generation but also simplify the architecture. We experimentally demonstrate 1-or 2-Gbaud QPSK vector signal generation at 88GHz based on our proposed scheme. The generated 1-Gbaud balanced pre-coded QPSK vector signal is transmitted 0.5-m wireless distance with the bit-error-ratio (BER) below hard-decision forward-error-correction (HD-FEC) threshold of 3.8×10−3. To our knowledge, this is the first time to demonstrate W-band mm-wave vector signal based on a single DML with quadrupling frequency and pre-coding technologies.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call