Abstract

The ability of cells to sustain mechanical stress is essential. It is however not very well understood how tension is expressed from the inside of the cell to the exterior. Here we show that these forces can be measured by photonic force microscopy (PFM), which is able to apply a force to cells and to probe their response to the physical stress. Our setup consists of an inverted microscope coupled with an optical trap from a 5W ND:YVO<sub>4</sub> fiber laser. Forces are applied to the cell by the trap through a 5&#956;m polystyrene bead coated with fibronectin, pre-incubated with cells to allow bead attachment and creation of focal adhesions. The reaction of the cell is monitored by sensing the position of the bead relative to the trap center by a quadrant photodiode, when the bead is in an equilibrium state between the photonics forces and the membrane elasticity and cell stiffness. The detection system is calibrated using a piezo nano-positioner and thermal noise analysis. We observed increased deformation of H4 cells treated with cytocholasin D, which disrupts the actin microfilaments. This observation is correlated to an overall decrease in the force by the photonics force microscope. Our results suggest that cell stiffness can be assessed by the PFM, which allows quantification of a tension within cells with sufficient precision.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.