Abstract

We present a photonically-excited antenna array at E-band for scanning by beam switching in wireless links. First, we discuss the proposed technique applied to photonic-enabled (sub)millimeter-wave transmitters. Next, we present our implementation; it consists of two sub-arrays of stacked patches as primary feeds of a Polytetrafluoroethylene (PTFE) lens, with one photodiode feeding each sub-array. To validate the assembly, the return loss and radiation patterns have been measured for one of the sub-arrays excited with a coplanar probe. In turn, the lens illuminated by one of the sub-arrays yields a directivity of 27 dBi. The radiation patterns measured for the transmitter module (including the lens) are in very good agreement with full-wave simulations, and they show that excitation of one of either sub-arrays allows beam switching between <inline-formula xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"><tex-math notation="LaTeX">$\pm 2.7^\circ$</tex-math></inline-formula> with a beam crossover at <inline-formula xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"><tex-math notation="LaTeX">$-3\, \mathrm{dB}$</tex-math></inline-formula> . Finally, we have tested the transmitter in a 0.6 m wireless link. Depending on the position of the detector and on which sub-array is excited, we have accomplished 5 Gbps transmission for on-off-keying modulation and direct detection (BER <inline-formula xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"><tex-math notation="LaTeX">$=10^{-11}$</tex-math></inline-formula> ). The system constitutes an initial proof of photonic-assisted beam switching for mm-wave transmitters enabling broadband operation with a directive and switchable beam.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.