Abstract

A wide range of software now exists for the design and simulation of photonic crystals. The sophistication and high performance specifications of many photonic crystal devices mean that techniques must typically not only provide accurate vector results, or at least a reliable error estimate, but also be able to deal with multi-scale problems, intricate materials properties including non-linearity, arbitrary geometries and multi-physics effects. The design process also demands consideration of process variation and performance optimisation issues. In this chapter we review some of the modelling and simulation activities that have formed the activities of Working Group 2 of the COST P11 Action on ‘The physics of linear, non-linear and active photonic crystals’ and place these achievements within some more general trends in electro-magnetics modelling. It will be seen that although time-domain numerical techniques such as the finite difference time-domain (FDTD) and transmission line modelling (TLM) methods have come to the forefront in recent years, principally driven by their flexibility, other techniques still have significant roles to play in the design process and in efficient, accurate and thorough simulation investigations.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call