Abstract

We report a new class of Optical Parametric Oscillators, based on a 20μm-long semiconductor Photonic Crystal Cavity and operating at Telecom wavelengths. Because the confinement results from Bragg scattering, the optical cavity contains a few modes, approximately equispaced in frequency. Parametric oscillation is reached when these high Q modes are thermally tuned into a triply resonant configuration, whereas any other parametric interaction is strongly suppressed. The lowest pump power threshold is estimated to 50 - 70μW. This source behaves as an ideal degenerate Optical Parametric Oscillator addressing the needs in the field of quantum optical circuits, paving the way to the dense integration of highly efficient nonlinear sources of squeezed light or entangled photons pairs.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call