Abstract

Using the concept of generalized Wannier functions, adapted from the electronic theory of solids, we demonstrate for two-dimensional photonic crystals the existence of a localized state basis and we establish an efficient computational method allowing a tight-binding-like parameter free modelization of any dielectric structure deviating from periodicity. Examples of numerical simulations using this formalism, including modal analysis of microcavities and waveguides are presented to prove the ability of this approach to deal accurately with large scale systems and complex structures. A tight-binding version of the transfer matrix method is proposed to describe the transmission and reflection properties of finite samples of photonic crystals.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.