Abstract

Photonic crystals have been used in antenna arrays to suppress mutual coupling. The design of microstrip antenna based on periodic photonic crystal structure is non-trivial and requires optimization of multiple factors. In this paper, we propose a Chaotic Boolean PSO algorithm for the design of microstrip antenna array with 2D mushroom photonic crystals. In our method, two different chaos sequences are employed to diversify the initialization and particle updates, which improves the particle search coverage and accelerates the convergence. The return loss and mutual coupling are used to construct the fitness function for the proposed CB-PSO. Experiments are conducted using multi-modal functions to evaluate the robustness of the proposed method against the state-of-the-art optimization methods as well as antenna design. Our results demonstrate that the proposed CB-PSO consistently achieved the best performance among state-of-the-art methods. Compared to the second best results, the improvements in CB-PSO are at least two folds. In our experiments of optimizing photonic crystal layout, CB-PSO achieves an optimized antenna design with much-improved performance. The mutual coupling is reduced by 5 dB with respect to the antenna with a full array of photonic crystal component; that is an improvement of 29.4%. In addition, the number of photonic crystal component is reduced from 48 to 24, which shows an advantage in the manufacture of photonic crystal microstrip antenna array.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call