Abstract
In this paper we are modeling the interplay of material and form birefringence in photonic crystal fibers. We introduce an efficient numerical method for the calculation of the modal structure. Our approach relies solving the fully vectorial wave equation for the transverse magnetic field and the respective propagation constants using a plane wave expansion. The method accounts for a simple form of material anisotropy. Our analysis is relevant to certain application areas, and in particular to fiber sensing, where material birefringence arises for instance due to transversally applied mechanical stress. We analyze the influence of material birefringence on the modal birefringence and the state of polarization of the fundamental mode.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.