Abstract
A novel kind of total internal reflection photonic crystal fiber (TIR-PCF) with highly nonlinear, large birefringence and multiple zero-dispersion wavelengths is designed. Characteristics such as birefringence, effective mode areas, nonlinearity and dispersion are investigated by finite element method (FEM). Numerical results demonstrate that the birefringence is 2.54×10-2 at the wavelength of 1.55 μm, and high nonlinear coefficients (50.22 W-1·km-1 and 54.61 W-1·km-1 in X, Y polarization directions respectively) are obtained by setting the appropriate structure parameters. In addition, two zero-dispersion wavelength points appear in the infrared band, one of which emerges near the wavelength of 1.55 μm. The design provides a new structure for large birefringence, highly nonlinear and photonic crystal fiber with multiple zero-dispersion wavelengths, and it could be widely used in polarization control, nonlinear optics, dispersion management and super-continuum generation.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.