Abstract
A one-dimensional photonic crystal elliptical-hole tapered low-index-mode nanobeam cavity sensor fully encapsulated in a water environment is proposed. In the proposed structure, to confine the light in the low-index region and enhance the light-matter interaction, a tapered major axis of the elliptical hole away from the nanobeam cavities center is optimized. Through a three-dimensional finite-difference time-domain simulation, the results show that the low-index-mode of the middle geometry cell is confined in the photonic bandgap of two-sided cells. The highest quality factor of 6.04×105 is achieved when 13 tapered segments and 5 mirror segments are placed at both sides of the host waveguide. The proposed nanobeam structure theoretically possesses a sensitivity of 244.7nm/RIU (refractive index unit) in a water environment. Moreover, an ultra-compact footprint of 6.4 μm×0.85 μm is achieved, which is only half of the size compared to the best value reported for the nanobeam structure. The results indicate that it is a promising sensor for excellent on-chip sensing with respect to the very small footprint.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.