Abstract

Light channeling and other structures that exploit strong optical confinement are an essential requirement for the realisation of high-density photonic integrated circuits. Strong confinement and controlled feedback are also important for efficient and compact sources for light with various levels of coherence and directionality. The presentation will survey work on various planar photonic crystal and wire device structures realised both in material systems providing strong vertical confinement (e.g. S-o-I) and in systems with weak vertical confinement such as typical epitaxial III-V semiconductor heterostructures. Work towards the combination of a number of elements into a single photonic IC will be highlighted, as will structures which combine photonic crystal and photonic wire features. Planar microcavities for frequency selection will be featured, in particular. We shall also resurvey briefly the technology aspects of fabrication, including electron-beam lithography (EBL), reactive ion etching (RIE), focused ion-beam etching (FIBS) and excimer laser lithography. Finally we shall consider techniques for the growth of self-organised photonic crystals with greater perfection and better controlled orientation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.