Abstract

We present a photonic compressive receiver, where the frequency information of the captured signal is directly mapped to the time intervals between compressed pulses for multiple microwave frequency measurement. The theoretical measurement error, multiple-frequency resolution and effective measurement range are derived. The effects of dispersion deviation and the electrical bandwidth are also discussed. The theoretical results are verified by the measured pulse waveforms and frequency-time mapping relationship. A photonic compressive receiver with an effective measurement range of 42 GHz, a multiple-frequency resolution of 1.2 GHz, a measurement accuracy of 88 MHz and a signal interception period of 27 ns is experimentally obtained.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.