Abstract

Synchronization in oscillatory systems is a frequent natural phenomenon and is becoming an important concept in modern physics. Nanomechanical resonators are ideal systems for studying synchronization due to their controllable oscillation properties and engineerable nonlinearities. Here we demonstrate synchronization of two nanomechanical oscillators via a photonic resonator, enabling optomechanical synchronization between mechanically isolated nanomechanical resonators. Optical backaction gives rise to both reactive and dissipative coupling of the mechanical resonators, leading to coherent oscillation and mutual locking of resonators with dynamics beyond the widely accepted phase oscillator (Kuramoto) model. In addition to the phase difference between the oscillators, also their amplitudes are coupled, resulting in the emergence of sidebands around the synchronized carrier signal.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.