Abstract
Technologies to monitor microenvironmental conditions and its spatial distribution are in high demand, yet remain unmet need. Herein, photonic microsensors are designed in a capsule format that can be injected, suspended, and implanted in any target volume. Colorimetric sensors are loaded in the core of microcapsules by assembling core-shell colloids into crystallites through the depletion attraction. The shells of the colloids are made of a temperature-responsive hydrogel, which enables the crystallites to rapidly and widely tune the structural color in response to a change in temperature while maintaining close-packed arrays. The spherical symmetry of the microcapsules renders them optically isotropic, i.e., displaying orientation-independent color. In addition, as a solid membrane is used to protect the delicate crystallites from external stresses, their high stability is assured. More importantly, each microcapsule reports the temperature of its microenvironment so that a suspension of capsules can provide information on the spatial distribution of the temperature.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.