Abstract

We propose a compact and highly efficient scheme for complete Bell-state analysis using two-photon absorption in a superconducting proximity region of a semiconductor avalanche photodiode. One-photon transitions to the superconducting Cooper-pair based condensate in the conduction band are forbidden, whereas two-photon transitions are allowed and are strongly enhanced by superconductivity. This Cooper-pair based two-photon absorption results in a strong detection preference of a specified entangled state. Our analysis shows high detection purity of the desired Bell state with negligible false detection probability. The theoretically demonstrated concept can pave the way towards practical realizations of advanced quantum information schemes.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.