Abstract

Time-stretch photonic analog-to-digital converter (ADC) technology is used to make an optical front end that compresses radio-frequency (RF) bandwidth before input to a digital oscilloscope. To operate a time-stretch ADC in a continuous-time mode for bandwidth compression, the optical signal on which the RF is modulated must be segmented and demultiplexed. We demonstrate both spectral and temporal methods for overlapping the channels. Using the temporal method, we obtain a compression ratio of 3 with four channels. Mating this optical front end with a state-of-the-art four-channel digital oscilloscope with an input bandwidth of 16 GHz and a sampling rate of 50 GS/s gives a digitizer with 150 GS/s and an input bandwidth of 48 GHz. We digitize RF signals up to 45 GHz and obtain effective number of bits (ENOB) ~ 2.8 with single channels and ~ 2.5 with multiple channels, both measured over the 48-GHz instantaneous bandwidth of our system.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.