Abstract

We propose a refractive index sensor in the terahertz domain for optofluidics comprising a one-dimensional photonic bandgap structure with plasmonic inclusions. The central defect layer of the photonic bandgap structure is the fluid channel and acts as the sensing region wherein the embedded plasmonic inclusions provide the enhanced fields. The simultaneous excitation of the plasmonic resonances within the photonic bandgap defect mode results in an enhanced fluid-field interaction. The effective medium parameters of this composite sensing region become extremely sensitive to refractive index variations of the fluid within the channel and lead to significant spectral shifts. The sensitivity of this sensor increases with the volume fraction of the plasmonic inclusions and also provides self-referenced spectral measurement. This is an improved alternative to conventional refractive index sensors, which are based exclusively on either photonic or plasmonic effects.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call