Abstract
Large photonic bandgaps (PBGs) have been obtained by sweeping linearly the parameters of complex sublattices inside the unitary cells of square- and triangular-lattice photonic crystals. An efficient frequency-domain finite-element method with periodical boundary conditions has been used for theoretical analyses. PBGs in silicon/air photonic crystals for both polarization modes have been considered for up to 21 eigenmodes and both low- and high-order PBGs have been obtained by this relatively simple systematic process.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.