Abstract

Numerical simulations on different kinds of realistic photonic bandgap fibers exhibiting reversed dispersion slope for the propagating fundamental mode are reported. We show that reversed or flat dispersion functions in a wide wavelength range using hollow-core, air-silica photonic bandgap fibers and solid core Bragg fibers with step-index profile can be obtained by introducing resonant structures in the fiber cladding. We evaluate the dispersion and confinement loss profiles of these fibers from the Helmholtz eigenvalue equation and the calculated fiber properties are used to investigate the propagation of chirped femtosecond pulses through serially connected hollow core fiber compressors.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.