Abstract

The possibility of designing compact ultranarrow bandpass filters based on the phenomenon of nonproximity resonant tunneling in multicore photonic bandgap fibers is proposed and numerically demonstrated in this investigation by making use of versatile algorithms based on the finite-element method. The proposed multifunctional assembly exhibits bandpass transmission characteristics at four closed spaced wavelengths with a 3-dB bandwidth of about 1.2 nm and an insertion loss of about 0.8dB. The isolation level between neighbor channels, ranging from 12dB up to 15 dB, could be achieved at optical frequencies. The overall device performance offers some promising propagation characteristics for various all-fiber narrow bandpass filters.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.