Abstract

We report the investigation of photonic band-gap properties of a core-shell simple cubic structure (air core with a dielectric shell) using a two-parameter level-set approach. The proposed structure can be obtained by partially backfilling high refractive index materials into a polymeric template fabricated by multibeam interference lithography. We find that the shell formation in the inverted simple cubic structure increases the complete photonic band-gap width by 10%–20% in comparison to that of a completely filled structure. The band gap between the fifth and sixth bands begins to appear at a refractive index contrast of 2.7. This study suggests the importance to investigate the core-shell formation in three-dimensional photonic crystals through backfilling, which may offer an additional control over their photonic band-gap properties.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.