Abstract

The emergence of a photonic band gap in $\mathrm{Ge}$-on-$\mathrm{Si}$ micropillars ordered in a two-dimensional square lattice is demonstrated by the finite-element method. Candidate architectures are fabricated through epitaxy and the opening of the photonic band gap experimentally proved by photoluminescence spectroscopy. When the direct-gap emission of $\mathrm{Ge}$ is resonantly driven into the photonic gap, light propagation in the lattice plane is inhibited. Emission is eventually funneled out of plane, yielding a giant increase, i.e., about one order of magnitude, in the observed intensity. The demonstration of light routing in microcrystals' lattices opens interesting possibilities for $\mathrm{Si}$ photonics. The epitaxial self-assembled microstructures introduced here can be monotonically integrated on $\mathrm{Si}$ to improve the performances of group-IV lasers or engineered to optimize the working wavelength of future quantum photonic circuits.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.