Abstract
Engineering of photonic and omnidirectional band gaps has been demonstrated theoretically in one-dimensional photonic crystals (1-D-PCs) containing linearly graded and constant refractive index materials. The reflection spectra, photonic band gap spectra, reflection phase shift, and electric field distribution have been obtained by transfer matrix method in the 200–800 THz region. It has been found that the number of photonic bands increases with layers thickness. The omnidirectional band gap in a quarter-wave stacking arrangement of such PC has also been obtained. Results show that different constituted homogeneous layers can change the omnidirectional band gap remarkably. Moreover, we have demonstrated that photonic bandwidths can also be controlled by the contrast of initial and final refractive index of the graded layers.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.