Abstract

Abstract Light’s ability to perform massive linear operations in parallel has recently inspired numerous demonstrations of optics-assisted artificial neural networks (ANN). However, a clear system-level advantage of optics over purely digital ANN has not yet been established. While linear operations can indeed be optically performed very efficiently, the lack of nonlinearity and signal regeneration require high-power, low-latency signal transduction between optics and electronics. Additionally, a large power is needed for lasers and photodetectors, which are often neglected in the calculation of the total energy consumption. Here, instead of mapping traditional digital operations to optics, we co-designed a hybrid optical-digital ANN, that operates on incoherent light, and is thus amenable to operations under ambient light. Keeping the latency and power constant between a purely digital ANN and a hybrid optical-digital ANN, we identified a low-power/latency regime, where an optical encoder provides higher classification accuracy than a purely digital ANN. We estimate our optical encoder enables ∼10 kHz rate operation of a hybrid ANN with a power of only 23 mW. However, in that regime, the overall classification accuracy is lower than what is achievable with higher power and latency. Our results indicate that optics can be advantageous over digital ANN in applications, where the overall performance of the ANN can be relaxed to prioritize lower power and latency.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.