Abstract
Several radiation surveys, at medical linear accelerator facilities where lead or steel had been used with concrete to fabricate the primary barriers, revealed the existence of a sizable neutron field outside the shielding. This neutron field is produced by photoneutrons generated in the metal portion of the shield when the primary x-ray beam is aimed at the barrier. A method was developed to calculate the neutron dose-equivalent rate expected outside a primary shield when it is irradiated by a high-energy x-ray beam. It was found that the minimum photoneutron dose was produced when the metal part of the shield was positioned inside the treatment room in front of the concrete and also by using steel in place of lead. A thickness of less than or equal to 17 cm of metal on the inner surface of the shield produced only a slight increase in the neutron dose equivalent outside the barrier.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.