Abstract

While energy-integration spectral CT with the capability of material decomposition has been providing added value to diagnostic CT imaging in the clinic, photon-counting spectral CT is gaining momentum in research and development, with the potential of overcoming more clinically relevant challenges. In practice, the photon-counting spectral CT provides the opportunity for principal component analysis to effectively extract information from the raw data. However, the principal component analysis in spectral CT may suffer from high noise induced by photon starvation, especially in energy bins at the high energy end. Via phantom and small animal studies, we investigate the feasibility of principal component analysis in photon-counting spectral CT and the benefit that can be offered by de-noising with the Content-Oriented Sparse Representation method.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call