Abstract

Laser-based remote sensing is undergoing a remarkable advance due to novel technologies developed at MIT Lincoln Laboratory. We have conducted recent experiments that have demonstrated the utility of detecting and imaging low-density aerosol clouds. The Mobile Active Imaging LIDAR (MAIL) system uses a Lincoln Laboratory-developed microchip laser to transmit short pulses at 14-16 kHz Pulse Repetition Frequency (PRF), and a Lincoln Laboratory-developed 32x32 Geiger-mode Avalanche-Photodiode Detector (GmAPD) array for singlephoton counting and ranging. The microchip laser is a frequency-doubled passively Q-Switched Nd:YAG laser providing an average transmitted power of less than 64 milli-Watts. When the avalanche photo-diodes are operated in the Geiger-mode, they are reverse-biased above the breakdown voltage for a time that corresponds to the effective range-gate or range-window of interest. The time-of-flight, and therefore range, is determined from the measured laser transmit time and the digital time value from each pixel. The optical intensity of the received pulse is not measured because the GmAPD is saturated by the electron avalanche. Instead, the reflectivity of the scene, or relative density of aerosols in this case, is determined from the temporally and/or spatially analyzed detection statistics.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.