Abstract

Entanglement and quantum squeezing have wide applications in quantum technologies due to their non-classical characteristics. Here we study entanglement and quantum squeezing in an open spin-optomechanical system, in which a Rabi model (a spin coupled to the mechanical oscillator) is coupled to an ancillary cavity field via a quadratic optomechanical coupling. We find that their performances can be significantly modulated via the photon of the ancillary cavity, which comes from photon-dependent spin-oscillator coupling and detuning. Specifically, a fully switchable spin-oscillator entanglement can be achieved, meanwhile a strong mechanical squeezing is also realized. Moreover, we study the environment-induced decoherence and dissipation, and find that they can be mitigated by increasing the number of photons. This work provides an effective way to manipulate entanglement and quantum squeezing and to suppress decoherence in the cavity quantum electrodynamics with a quadratic optomechanics.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.