Abstract

Single Molecule Localization Microscopy has become one of the most successful and widely applied methods of Super-resolution Fluorescence Microscopy. Its achievable resolution strongly depends on the number of detectable photons from a single molecule until photobleaching. By cooling a sample from room temperature down to liquid nitrogen temperatures, the photostability of dyes can be enhanced by more than 100 fold, which results in an improvement in localization precision greater than 10 times. Here, we investigate a variety of fluorescent dyes in the red spectral region, and we find an average photon yield between 3.5 ⋅ 106 to 11 ⋅ 106 photons before bleaching at liquid nitrogen temperatures, corresponding to a theoretical localization precision around 0.1 nm.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.