Abstract

As an essential element for quantum information processing and quantum communication, efficient quantum memory based on solid-state platforms is imperative for practical applications but remains a challenge. Here we propose a scheme to realize a highly efficient and controllable storage and routing of single photons based on quantum dots (QDs) with a Rashba spin-orbit coupling (SOC). We show that the SOC in the QDs can provide a flexible built-up of electromagnetically induced transparency (EIT) for single-photon propagation, and storage, retrieval, as well as routing of single-photon wavepackets can also be implemented through the EIT. Moreover, we demonstrate that the propagation loss of the single-photon wavepackets in the QDs may be largely suppressed by means of a weak microwave field, by which the storage and routing of the single photons can be made to have high efficiency and fidelity. Our research opens a route for designs of advanced solid-state devices promising for applications in photonic quantum-information processing and transmission based on the QDs with SOC.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call