Abstract

We study theoretically the statistics of photons generated by a quantum emitter located in the vicinity of a periodic plasmonic nanostructure. The presented formalism is based on a macroscopic QED formalism in conjunction with a density-matrix approach in order to obtain the second-order correlation function of the emitted photons accounting for the influence of the plasmonic environment. The metallic reservoir coupling is computed using Green's-function theory, which, for a periodic lattice of scatterers, is calculated by a multiple-scattering method. We show that the photon statistics and the antibunching of emitted photons depend very strongly on the orientation of the quantum emitter relative to the lattice, on the transition frequency of the emitter, on the intensity of the applied field, and on the geometrical parameters of the nanoparticles, such as the shell thickness.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.