Abstract

In this study, photon attenuation parameters of (30-x) SiO2–15PbO–10CdO-xTiO2, with x = 0, 2, 4, 6, 8 and 10% mol, were determined and their application as shielding material were discussed. The WinXCOM software was used to determine the mass attenuation coefficient of the studied glasses for the energy range (0.015-15MeV). The mass attenuation coefficient of the glass samples first decline up to 0.09 MeV and slightly increase abruptly and then declined uniformly for all the glasses to approximately zero after about 10 MeV. The effective atomic number (Zeff) was also calculated for the glass samples and were observe to raise from 0.015 to 0.02 MeV and then decreased between 0.02-5 MeV. On account of the dominance of the photoelectric effect in the low energy region, there was a sudden increase in Zeff at about 0.08 MeV close to the absorption edge of the Pb (0.088 MeV). The rapid increment was observed at 0.1–1.5 MeV by transcending typical Compton scattering interaction at intermediate energies for Zeff'’s and began to decrease in the same form again. The lower Zeff values were found in low and high energy region for all SPCT glasses. The calculated mean free path, half value layer and tenth value layer values were observe to decline as the TiO2 doping of the glasses increased which accounts for the three photon interaction mechanisms effectiveness in the variation of MFP and HVL values with energy. It can be concluded that SPCT glasses may be considered an alternative material for radiation shielding practices.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.