Abstract
We present the study of a fuzzy clustering algorithm for the Belle II electromagnetic calorimeter using Graph Neural Networks. We use a realistic detector simulation including simulated beam backgrounds and focus on the reconstruction of both isolated and overlapping photons. We find significant improvements of the energy resolution compared to the currently used reconstruction algorithm for both isolated and overlapping photons of more than 30% for photons with energies Eγ<0.5GeV\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$E_{\\gamma }<0.5\\,\\mathrm {\\,Ge\\hspace{-1.00006pt}V}$$\\end{document} and high levels of beam backgrounds. Overall, the GNN reconstruction improves the resolution and reduces the tails of the reconstructed energy distribution and therefore is a promising option for the upcoming high luminosity running of Belle II.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.