Abstract

We present data on photon production in non single-diffractivep \(\bar p\)-collisions at c.m. energies of 200 and 900 GeV. Besides the general properties of photon production, i.e. pseudorapidity distribution and average multiplicity, we also investigate photon-charged two-particle pseudorapidity and multiplicity correlations. We find for the average number of photons in non single-diffractivep \(\bar p\)-collisions 22.2±1.4±2.0 at 200 GeV and 41.4±2.1±3.5 at 900 GeV, where the first error is statistical and the second systematic. The analysis of photon-charged particle multiplicity correlations reveals strong positive correlations between the average number of photons and the number of simultaneously produced charged particles, as expected from FNAL and ISR studies and from our result at 546 GeV. We obtain for the correlation slope 0.95±0.08±0.11 at 200 GeV and 1.09±0.09±0.13 at 900 GeV (first error is statistical and the second systematic). The investigation of photon-charged two-particle pseudorapidity correlations shows that these correlations are of short range and compatible with the observed charged two-particle pseudorapidity correlations. These correlations and the results for the average number of photons as a function of the produced number of charged particles favour the conclusion that photon sources other than π0 s contribute significantly to the observed photon yield in non single-diffractivep \(\bar p\)-collisions. For example, if all photons are assumed to come from π0 s and η mesons, a η/π0 ratio of about 20% is inferred.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.