Abstract

Microring resonators made from silicon are becoming a popular microscale device format for generating photon pairs at telecommunications wavelengths at room temperature. In compact devices with a footprint less than 5 × 10(-4) mm2, we demonstrate pair generation using only a few microwatts of average pump power. We discuss the role played by important parameters such as the loss, group-velocity dispersion and the ring-waveguide coupling coefficient in finding the optimum operating point for silicon microring pair generation. Silicon photonics can be fabricated using deep ultraviolet lithography wafer-scale fabrication processes, which is scalable and cost-effective. Such small devices and low pump power requirements, and the side-coupled waveguide geometry which uses an integrated waveguide, could be beneficial for future scaled-up architectures where many pair-generation devices are required on the same chip.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call