Abstract

Monte Carlo ray-tracing schemes have been developed for the evaluation of radiative heat transfer for problems, in which the participating medium is represented by discrete point masses, such as the flow field and scalar fields in PDF Monte Carlo methods frequently used in combustion modeling. Photon ray tracing in such cases requires that an optical thickness is assigned to each of the point masses. Two approaches are discussed, the point particle model (PPM), in which the shape of particle is not specified, and the spherical particle model (SPM) in which particles are assumed to be spheres with specified radiation properties across their volumes. Another issue for ray tracing in particle fields is the influence region of a ray. Two ways of modeling a ray are proposed. In the first, each ray is treated as a standard volume-less line. In the other approach, the ray is assigned a small solid angle, and is thus treated as a cone with a decaying influence function away from its centerline. Based on these models, three different interaction schemes between rays and particles are proposed, i.e., line-SPM, cone-PPM and cone-SPM methods, and are compared employing several test problems.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.