Abstract

This paper addresses the problem of tomographic reconstruction of absorption and scattering parameters in the optical region from measurements of transilluminated light. Specifically, the question of the sensitivity of different measurement schemes on the boundary of an object to perturbations of the optical parameters within the object are addressed. The concept of a photon-sampling volume [Appl. Opt. 33, 448 (1994)] and a photon-hitting density [Appl. Opt. 32, 448 (1993)] is extended to a photon-measurement density function (PMDF). The PMDF is derived from the Green's function of the diffusion equation and can be expressed for measurements such as the time-varying intensity, integrated intensity, temporal moments, and phase shift, as well as for both absorption and diffusion perturbations. Closed-form solutions are given for a number of these functions in infinite space, half-space, and slab geometries. Example results are given in terms of three-dimensional images.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.