Abstract

The generally small Gibbs free energy difference between the Z and E isomers of hydrazone photoswitches has so far precluded their use in photon energy storing applications. Here, we report on a series of cyclic and acyclic hydrazones, which possess varied degrees of ring strain and, hence, stability of E isomers. The photoinduced isomerization and concurrent phase transition of the cyclic hydrazones from a crystalline to a liquid phase result in the storage of a large quantity of energy, comparable to that of azobenzene derivatives. We demonstrate that the macrocyclic photochrome design in combination with phase transition is a promising strategy for molecular solar thermal energy storage applications.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call