Abstract

Ions with multiple inner-shell vacancies frequently arise due to their interaction with different targets, such as (intense) light pulses, atoms, clusters or bulk material. They are formed, in addition, if highly charged ions approach surfaces and capture electrons at rather large distances. To explore the interaction of such hollow ions and their subsequent relaxation, photon spectra in different frequency regions have been measured and compared to calculations. To support these and related measurements, we here show within the framework of the Jena Atomic Calculator (Jac) how (additional) electrons in outer shells modify photon emission and lead to characteristic shifts in the observed spectra. Further, for highly charged Ar ions in KLm(m=1
8) configurations, we analyze the mean relaxation time for their stabilization into the different ground configurations. These examples demonstrate how a powerful and flexible toolbox such as Jac will be useful (and necessary) in order to model the photon and electron emission of ions as they occur not only near surfaces but also in astro-, atomic and plasma physics.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.