Abstract
The photon emission from a single molecule driven simultaneously by a laser and a slow electric radio frequency (rf) field is studied. We use a non-Hermitian Hamiltonian approach which accounts for the radiative decay of a two-level system modeling the single-molecule source. We apply the renormalization group method for differential equations to obtain long time solution of the corresponding Schrodinger equation, which allows us to calculate the average waiting time for the first photon emission. Then, we analyze the conditions for suppression and enhancement of photon emission in this dissipative two-level system. In particular we derive a transcendental equation, which yields the nontrivial rf field control parameters, for which enhancement and suppression of photon emission occurs. For finite values of radiative decay rate an abrupt transition to the state when both situations are indistinguishable is found for certain values of the rf field parameters. Our results are shown to be in agreement with the available experiments [Ch. Brunel et al., Phys. Rev. Lett. 81, 2679 (1998)].
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.