Abstract

Photon echo calculations for semiconductor quantum dots and quantum wells are presented and the role of the Fermion exchange effects is emphasized. The echoes for the quantum-dot systems arise as a consequence of the inhomogeneous broadening due to the dot size distribution. It is shown that quantum beats are superimposed to the echo signals, suggesting a sensitive way to determine the energy level separation in these systems. In semiconductor quantum wells the inhomogeneous broadening is caused by the continuum of states for the unconfined directions of electron motion. To investigate this case the semiconductor Bloch equations are generalized to include confinement induced valence band mixing. Photon echo and phase conjugate signals are computed with and without band mixing effects. The significance of the exchange contributions is analyzed for the different configurations.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.