Abstract
The leading- and higher-twist distribution amplitudes and light-cone wave functions of real and virtual photons are analyzed in chiral quark models. The calculations are performed in the nonlocal quark model based on the instanton picture of the QCD vacuum, as well as in the spectral quark model and the Nambu--Jona-Lasinio model with the Pauli-Villars regulator, which both treat interaction of quarks with external fields locally. We find that in all considered models the leading-twist distribution amplitudes of the real photon defined at the quark-model momentum scale are constant or remarkably close to the constant in the $x$ variable, thus are far from the asymptotic limit form. The QCD evolution to higher momentum scales is necessary and we carry it out at the leading order of the perturbative theory for the leading-twist amplitudes. We provide estimates for the magnetic susceptibility of the quark condensate ${\ensuremath{\chi}}_{\mathrm{m}}$ and the coupling ${f}_{3\ensuremath{\gamma}}$, which in the nonlocal model turn out to be close to the estimates from QCD sum rules. We find the higher-twist distribution amplitudes at the quark model scale and compare them to the Wandzura-Wilczek estimates. In addition, in the spectral model we evaluate the distribution amplitudes and light-cone wave functions of the $\ensuremath{\rho}$-meson.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.