Abstract

Working under low light conditions is of particular interest in machine vision applications such as night vision, tone-mapping techniques, low-light imaging, photography, and surveillance cameras. This work aims at investigating the perception of color at low light situations imposed by physical principles governing photon emission. The impact of the probabilistic nature of photon emission on our color perception becomes more significant at low light levels. In this regard, physical principles are leveraged to develop a framework to take into account the effects of low light level on color vision. Results of this study shows that the normalized spectral power distribution of light changes with light intensity and becomes more uncertain at low light situation as a result of which the uncertainty of color perception increases. Furthermore, a color patch at low light levels give rise to uncertain color measurements whose chromaticities form an elliptic shape inside the chromaticity diagram around the high intensity chromaticity of the color patch. The size of these ellipses is a function of the light intensity and the chromaticity of color patches however the orientation of the ellipses depends only on the patch chromaticity and not on the light level. Moreover, the results of this work indicate that the spectral composition of light is a determining factor in the size and orientation of the ellipses. The elliptic shape of measured samples is a result of the Poisson distribution governing photon emission together with the form of human cone spectral sensitivity functions and can partly explain the elliptic shape of MacAdam ellipses.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.