Abstract

Measurement of photon statistics is an important tool for the verification of quantum properties of light. Due to the various imperfections of real single photon detectors, the observed statistics of photon counts deviates from the underlying statistics of photons. Here we analyze statistical properties of coherent states, and investigate a connection between Poissonian distribution of photons and sub-Poissonian distribution of photon counts due to the detector dead-time corrections. We derive a functional dependence between the mean number of photons and the mean number of photon counts, as well as connection between higher-order statistical moments, for the pulsed or continuous wave coherent light sources, and confirm the results by numerical simulations.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.