Abstract

We demonstrate a single-photon counting Raman spectroscope and benchmark it against conventional and surface-enhanced Raman spectroscopy. For direct comparison without ambiguity, we use the same solutions of Rhodamine 6G and a common optical setup with either a spectrometer or an acousto-optic tunable filter, whereas the surface enhancement is realized with immobilized Ag nanoparticles. Our results find that the single photon counting significantly elevates the detection sensitivity by up to eight orders of magnitude, arriving at a comparable level of surface-enhanced Raman spectroscopy. Another significant advantage is with the time-resolving measurement, where we demonstrate time-gated and time-correlated single-photon counting with sub-nanosecond resolution. It offers insights into the samples’ transient responses and enables the isolation of Raman scattering from fluorescence signals.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.