Abstract

Underwater wireless optical communication (UWOC) is a critical technology for underwater communication, providing high speed, low latency, and security advantages. However, the strong attenuation in the water channel still limits the UWOC systems and their performances require further improvement. In this study, an orbital angular momentum (OAM) multiplexing UWOC system that uses photon-counting detection is experimentally demonstrated. By employing a single-photon counting module to receive photon signals, we analyze the bit error rate (BER) and photon-counting statistics by building a theoretical model that fits the real system, and demodulate the OAM states in single photon level and implement signal processing using field programmable gate array (FPGA) programming. Based on these modules, a 2-OAM multiplexed UWOC link is established over a water channel of 9 m. By using on-off keying modulation and 2-pulse position modulation, we achieve a BER of 1.26×10-3 with data rate of 20Mbps and 3.17×10-4 with data rate of 10Mbps respectively, which below the forward error correction (FEC) threshold of 3.8×10-3. The total transmission loss is 37 dB under an emission power of 0.5 mW, which is equivalent to the attenuation of 283 m Jerlov I type seawater from the perspective of energy loss. Our verified communication scheme will benefit the development of long-range and high-capacity UWOC.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.