Abstract

The photon costs of photoreduction/assimilation of nitrate (NO3-) into organic nitrogen in shoots and respiratory driven NO3- and NH4+ assimilation in roots are compared for terrestrial vascular plants, considering associated pH regulation, osmotic and ontogenetic effects. Different mechanisms of neutralisation of the hydroxyl (OH-) ion necessarily generated in shoot NO3- assimilation are considered. Photoreduction/assimilation of NO3- in shoots with malic acid synthesis and either accumulation of malate in leaf vacuoles or transport of malate to roots and catabolism there have a similar cost which is around 35% less than that for root NO3- assimilation and around 20% less than that for photoreduction/assimilation of NO3-, oxalate production and storage of Ca oxalate in leaf vacuoles. The photon cost of root NH4+ assimilation with H+ efflux to the root medium is around 70% less than that of root NO3- assimilation. These differences in photon cost must be considered in the context of the use of a combination of locations of NO3- assimilation and mechanisms of acid-base regulation, and a maximum of 4.9-9.1% of total photon absorption needed for growth and maintenance that is devoted to NO3- assimilation and acid-base regulation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.