Abstract

By using a combination of static and dynamic laser light scattering (LLS) and transient electric birefringence (TEB) we have been able to determine structural characteristics and size distributions of polydisperse disk-shaped particles (bentonite) in suspensions. In the limit of low concentration and scattering angle we obtained the weight-average molecular weight Mw, the z-average radius of gyration <R2g>1/2 and the second virial coefficient A2 from static light scattering measurements; at higher scattering angles we were able to estimate an average particle thickness. Photon correlation function measurements of both the polarized and the depolarized components of scattered light give us the average diffusion coefficients DT (translational) and DR (rotational) which can in turn be converted to average particle dimensions. Detailed analysis of characteristic linewidth distributions yield particle size distributions consistent with direct observations using electron microscopy. The TEB experiment provides us with the average optical polarizability difference Δα°, the ratio of permanent dipolar moment to electric polarizability difference, and the average rotational diffusion coefficient DR (TEB). Profile analysis of the decay curve yields a distribution of particle sizes consistent with the results from LLS.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.